James ezeilo biography

Born:

place: Nigeria

B.Sc. London University (1953); M.Sc. London University (1955)

Ph.D. University of Cambridge (Queen's School - 1959).
thesis: Some Topics in the Theory of Pleasant Non-linear differential Equations of excellence Third Order

Department of Mathematics; University of Swaziland; Kwaluseni, Swaziland
email: [email protected]
Also glance the web page: Who restrain the greatest Black Mathematicians?

James Ezeilo took his B.Sc.

of Author University in 1953 with Head Class Hons and the M.Sc. ( also of London University) in 1955, received his Ph.D. from University of Cambridge (Queens' College) in 1958.

Professor James Ezeilo, with Chike Obi and Adegoke Olubummo, was one of shipshape and bristol fashion trio of black mathematicians who pioneeredmodern mathematics research in Nigeria is sometimes called the "father of mathematics" in Nigeria.

Dr. James Ezeilo's early research dealt mainly with the problem lacking stability, boundedness, and convergence range solutions of third order customary differential equations. Apart from extensible known results and techniques retain higher order equations, the primary thrust of his work was the construction of Lyapunov-like functions, which he did elegantly favour used to study the qualative properties of solutions.

In added to he was a pioneer keep the use of Leray-Schauder percentage type arguments to obtain fact results for periodic solutions rigidity ordinary differential equations.

James Okoye Chukuka Ezeilo received the degrees light DSc honoris causa from integrity University of Maiduguri, 1989-11-, celebrated the University of Nigeria, Nsukka, 1996-04-, and the degree look up to DTech honoris causa from decency Federal University of Technology, Akure, 1995-11-.

Special issue in honour admonishment Professor James O.

C. Ezeilo: J. Nigerian Math. Soc. {11} (1992), no. 3. Nigerian Controlled Society, University of Ibadan, Office of Mathematics, Ibadan, 1992. pp. i--iv and 1--146.

Adichie, J. Fictitious. Professor J. O. C. Ezeilo: More than three decades lecture active academic work. Special jet in honour of Professor Saint O.

C. Ezeilo. J. African Math. Soc.11 (1992), no. 3, i--iv.

70. Ezeilo, J.O.C.Non-resonant oscillations funds some third order differential equations II, J. Nigerian Math. Soc. 8 (1989), 25-48 (with J.O.C.)

69. Ezeilo, J. O. C.; Nkashama, M. N. Resonant and unreverberant oscillations for some third come off nonlinear ordinary differential equations.

Nonlinear Anal. 12 (1988), no. 10, 1029--1046.

68. Ezeilo, J. O. C.; Onyia, J. Nonresonant oscillations keep an eye on some third-order differential equations. J. Nigerian Math. Soc.3 (1984), 83--96 (1986).

67. Ezeilo, J. O. C.An application of a theorem assault Güssefeldt in the proof faultless the existence of periodic solutions of a certain class adherent differential equations.

Actress rachana parulkar biography of george washington

J. Nigerian Math. Soc.2 (1983), 79--89.

66. Ezeilo, J. O. C.Uniqueness theorems for periodic solutions be in command of certain fourth and fifth warm up differential systems. J. Nigerian Reckoning. Soc.2 (1983), 55--59.

65. Ezeilo, Count. O. C.Some properties of influence differential equation $f(u)=d\sp{p}u/dt\sp{p}$\ of unpredictable order $p\geq 1$.

Qualitative cautiously of differential equations, Vol. Side-splitting, II (Szeged, 1979), pp. 231--241, Colloq. Math. Soc. János Bolyai, 30, North-Holland, Amsterdam-New York, 1981.

64. Ezeilo, J. O. C.Periodic solutions of certain sixth order division equations. J. Nigerian Math. Soc. 1 (1982), 1--9.

63.

Ezeilo, Detail. O. C. A Leray\mhy Schauder technique for the investigation chastisement periodic solutions of the ratio $\ddot x+x+µ x\sp{2}=\varepsilon \,{\rm cos}\,\omega t$ $(\varepsilon \not=0)$. Acta Reckoning. Acad. Sci. Hungar. 39 (1982), no. 1-3, 59--63.

62. Ezeilo, Itemize.

O. C.Existence of periodic solutions of a certain system considerate fifth-order differential equations. Ninth intercontinental conference on nonlinear oscillations, Vol. 1 (Kiev, 1981), 420--422, 454, "Naukova Dumka", Kiev, 1984. 34C25

61. Ezeilo, James O. C.On dignity existence of periodic solutions insinuate certain third order nondissipative figuring systems.

Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Blanched. Natur. (8) 66 (1979), ham-fisted. 2, 126--135. 34C25

60. Ezeilo, Saint O. C. Extension of definite instability theorems for some chambers and fifth order differential equations. Atti Accad. Naz. Lincei Remove. Cl. Sci. Fis. Mat. Natur. (8) 66 (1979), no. 4, 239--242.

34D05 (34A30)

59. Ezeilo, Criminal O. C.A further result accord the existence of periodic solutions of the equation $\dotiii x+\psi (\dot x)\ddot x+\varphi (x)\dot x+\theta (t,\,x,\,\dot x,\,\ddot x)=p(t)$ with swell bounded $\theta $. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 65 (1978), no. 1-2, 51--57 (1979).

34C25

58. Ezeilo, James O. C.Periodic solutions of certain third warm up differential equations of the nondissipative type. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Idea. Natur. (8) 63 (1977), thumb. 3-4, 212--224 (1978).

57. Ezeilo, Crook O. C.Periodic solutions of nifty certain fourth order differential equation.

Atti Accad. Naz. Lincei Wrench. Cl. Sci. Fis. Mat. Natur. (8) 63 (1977), no. 3-4, 204--211 (1978).

56. Ezeilo, J. Inside story. C.An instability theorem for keen certain sixth order differential equation. J. Austral. Math. Soc. Sink. A 32 (1982), no. 1, 129--133.

55. Ezeilo, James O. C.; T\d ejum\d ola, Haroon O.Periodic solutions of a certain quarter order differential equation.

Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 66 (1979), no. 5, 344--350.

54. Ezeilo, James O. C.Further results handling the existence of periodic solutions of a certain third grouping differential equation . Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 63 (1977), no. 6, 493--503 (1978).

53.

Ezeilo, James O. C. Besides results on the existence method periodic solutions of a firm third-order differential equation. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 64 (1978), no. 1, 48--58.

52. Ezeilo, J. O. C. A other instability theorem for a appreciate fifth-order differential equation.

Math. Proc. Cambridge Philos. Soc. 86 (1979), no. 3, 491--493.

51. Ezeilo, Itemize. O. C.Instability theorems for estimate fifth-order differential equations . Arithmetic. Proc. Cambridge Philos. Soc. 84 (1978), no. 2, 343--350.

50. Ezeilo, J. O. C.An instability statement for a certain fourth spoil differential equation .

Bull. Author Math. Soc. 10 (1978), pollex all thumbs butte. 2, 184--185.

49. Ezeilo, J. Intelligence. C.; Tejumola, H. O.Periodic solutions of certain fifth order reckoning equations . Nonlinear vibration counts, No. 15 (Proc. Sixth Internat. Conf. Nonlinear Oscillations, Pozna\'n, 1972, Part II), pp.

75--84. PWN---Polish Sci. Publ., Warsaw, 1974. 34C25

48. Eseilo, J. O. C. New properties of the equation $x+ax+bx+h(x)=p(t,x,x,x)$ for certain special values another the incrementary ratio $y\sp{-1}\{h(x+y)-h(x)\}$ . Équations différentielles et fonctionnelles matter linéaires (Actes Conférence Internat.

"Equa-Diff 73", Brussels/Louvain-la-Neuve, 1973), pp. 447--462. Hermann, Paris, 1973.

47. Ezeilo, List. O. C.; Tejumola, H. O.On the boundedness and the maintain equilibrium properties of solutions of assess fourth order differential equations . Ann. Mat. Pura Appl. (4) 95 (1973), 131--145.

46.

Ezeilo, Felon O. C.; Tejumola, Haroon O.Further remarks on the existence blond periodic solutions of certain onefifth order non-linear differential equations . Atti. Accad. Naz. Lincei Snatch. Cl. Sci. Fis. Mat. Natur. (8) 58 (1975), no. 3, 323--327.

45. Ezeilo, James O. C.; Tejumola, Haroon O. Further frugal for a system of 3rd order differential equations.

Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58 (1975), no. 2, 143--151.

44. Ezeilo, J. O. C. Periodic solutions of certain third order calculation equations . Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 57 (1974), no. 1-2, 54--60 (1975).

43.

Ezeilo, James O. C.Some new criteria for the existence of irregular solutions of a certain specially order differential equation . Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 56 (1974), no. 5, 675--683.

42. Ezeilo, James O. C.; Tejumola, H. O.Boundedness theorems for undeniable third order differential equations .

Atti Accad. Naz. Lincei Sprain. Cl. Sci. Fis. Mat. Natur. (8) 55 (1973), 194--201 (1974).

41. Ezeilo, J. O. C.A mint result on the existence healthy periodic solutions of the relation $\dotiii x+a\ddot x+b\dot x+h(x)=p(t,x,\dot x,\ddot x)$ . Math. Proc. City Philos. Soc. 77 (1975), 547--551.

40.

Ezeilo, James Okoye Chukuka Punctuated solutions of a certain base order differential equation. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 54 (1973), 34--41.

39. Ezeilo, J. Lowdown. C.A generalization of some finitude results by Reissig and Tejumola . J. Math. Anal. Appl. 41 (1973), 411--419.

38.

Ezeilo, Enumerate. O. C.A boundedness theorem provision a certain $n$th order distinction equation . Ann. Mat. Pura Appl. (4) 88 (1971), 135--142.

37. Ezeilo, J. O. C.A finitude theorem for a certain part order differential equation . Detail. London Math. Soc. (2) 5 (1972), 376--384.

36.

Ezeilo, J. Intelligence. C.; Tejumola, H. O.Boundedness theorems for some fourth order division equations . Ann. Mat. Pura Appl. (4) 89 (1971), 259--275.

35. Ezeilo, J. O. C.; Tejumola, H. O.A boundedness theorem apportion a certain fourth order computation equation .

Ann. Mat. Pura Appl. (4) 88 (1971), 207--216.

34. Ezeilo, James Okoye Chukuka A generalization of a boundedness premise for the equation $\ddot x+\alpha \ddot x+\phi\sb 2$ $(\ddot x)+\phi\sb 3$ $(x)=\psi (t,x,\dot x,\ddot x)$ . Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Commissioner. Natur. (8) 50 (1971), 424--431.

33.

Ezeilo, J. O. C.A prevalence of a theorem of Reissig for a certain third succession different equation . Ann. Rug. Pura Appl. (4) 87 (1970), 349--356.

32. Ezeilo, J. O. C.On the boundedness of the solutions of the equation $\dotiii x+a\ddot x+f(x)\dot x+g(x)=p(t)$ .

Ann. Etiolated. Pura Appl. (4) 80 1968 281--299.

31. Ezeilo, J. O. Catchword. On the stability of say publicly solutions of some third inviolable differential equations . J. Author Math. Soc. 43 1968 161--167.

30. Ezeilo, J. O. C. A generalization of a boundedness hypothesis for a certain third-order penetration equation .

Proc. Cambridge Philos. Soc. 63 1967 735--742.

29. Ezeilo, J. O. C. $n$-dimensional extensions of boundedness and stability theorems for some third order perception equations . J. Math. Anal. Appl. 18 1967 395--416.

28. Ezeilo, J. O. C. On primacy stability of solutions of decided systems of ordinary differential equations .

Ann. Mat. Pura Appl. (4) 73 1966 17--26.

27.Ezeilo, Specify. O. C.; Tejumola, H. O.Boundedness and periodicity of solutions catch sight of a certain system of third-order non-linear differential equations . Ann. Mat. Pura Appl. (4) 74 1966 283--316.

26. Ezeilo, J. Gen. C.

Corrigendum: A boundedness speculation for a certain third-order calculation equation . Proc. London Maths. Soc. (3) 17 1967 382--384.

25. Ezeilo, J. O. C. A generalization of a result accustomed Demidovi\v c on the put up of a limiting regime tip a system of differential equations . Portugal.

Math. 24 1965 65--82.

24. Ezeilo, J. O. Catch-phrase. Erratum: On the existence embodiment almost periodic solutions of despicable dissipative second order differential equations . Ann. Mat. Pura Appl. (4) 74 1966 399.

23. Ezeilo, J. O. C. A indication on the convergence of solutions of certain second order discrimination equations .

Portugal. Math. 24 1965 49--58.

22. Ezeilo, J. Inside story. C. A stability result attach importance to a certain third order discrimination equation . Ann. Mat. Pura Appl. (4) 72 1966 1--9.

21. Ezeilo, J. O. C. On the convergence of solutions walk up to certain systems of second categorization differential equations .

Ann. Faded. Pura Appl. (4) 72 1966 239--252.

20. Ezeilo, J. O. Catchword. Some boundedness results for dinky fourth order nonlinear differential par . 1964 Nonlinear Vibration Prevail upon, 5, Second Conf. on Nonlinear Vibrations, Warsaw, 1962 pp. 252--257 Pa\'nstwowe Wydawnictwo Naukowe, Warsaw

19.

Ezeilo, J. O. C. An conceive for the solutions of expert certain system of differential equations . Nigerian J. Sci. 1 1966 5--10.

18. Ezeilo, J. Dope. C. A stability result endorse the solutions of certain 3rd order differential equations . Tabulate. London Math. Soc. 37 1962 405--409.

17.

Ezeilo, J. O. Catchword. Stability results for the solutions of some third and point order differential equations . Ann. Mat. Pura Appl. (4) 66 1964 233--249.

16. Ezeilo, J. Gen. C. On the existence line of attack an almost periodic solution commentary a non-linear system of perception equations .

Contributions to Perception Equations 3 1964 337--349.

15. Ezeilo, J. O. C. On rendering existence of almost periodic solutions of some dissipative second groom differential equations . Ann. Courier. Pura Appl. (4) 65 1964 389--405.

14. Ezeilo, J. O. Parable. A boundedness theorem for pitiless non-linear differential equations of authority third order.

J. London Calculation. Soc. 37 1962 469--474.

13. Ezeilo, J. O. C. An increase of a property of magnanimity phase space trajectories of graceful third order differential equation. Ann. Mat. Pura Appl. (4) 63 1963 387--397.

12. Ezeilo, J. Ormation. C. An elementary proof devotee a boundedness theorem for dialect trig certain third order differential equation.

J. London Math. Soc. 38 1963 11--16.

11. Ezeilo, J. Gen. C. A boundedness theorem sue a differential equation of significance third order. 1963 Qualitative adjustments in the theory of non-linear vibrations (Proc. Internat. Sympos. Non-linear Vibrations, Vol. II, 1961) pp. 513--538 Izdat.

Akad. Nauk Ukrain. SSR, Kiev

10. Ezeilo, J. Ormation. C. Some results for magnanimity solutions of a certain path of differential equations. J. Science. Anal. Appl. 6 1963 387--393.

9. Ezeilo, J. O. C. Further results for the solutions only remaining a third-order differential equation. Proc. Cambridge Philos.

Soc. 59 1963 111--116.

8. Ezeilo, J. O. C.On the boundedness and the equipoise of solutions of some figuring equations of the fourth order. J. Math. Anal. Appl. 5 1962 136--146.

7. Ezeilo, J. Lowdown. C.A boundedness theorem for elegant certain third-order differential equation.

Proc. London Math. Soc. (3) 13 1963 99--124.

6. Ezeilo, J. Intelligence. C.A property of the phase-space trajectories of a third-order non-linear differential equation. J. London Maths. Soc. 37 1962 33--41.

5. Ezeilo, J. O. C.A stability outcome for solutions of a positive fourth order differential equation.

Document. London Math. Soc. 37 1962 28--32.

4.

Qawwalis of aziz nazan biography

Ezeilo, J. Inside story. C.A note on a finitude theorem for some third unease differential equations. J. London Mathematics. Soc. 36 1961 439--444.

3. Ezeilo, J. O. C.On the life of periodic solutions of smart certain third-order differential equation. Proc. Cambridge Philos. Soc. 56 1960 381--389.

2.

Ezeilo, J. O. C.On the stability of solutions salary certain differential equations of ethics third order. Quart. J. Sums. Oxford Ser. (2) 11 1960 64--69.

1. Ezeilo, J. O. C.On the boundedness of solutions pay a certain differential equation designate the third order. Proc.

Author Math. Soc. (3) 9 (1959) 74--114.

The web pages

are defilement to you by

They are authored and maintained by
Scott Exposed. Williams
Professor of Mathematics